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A METHOD TO DETERMINE MOISTURE PROFILES FROM TOTAL

MOISTURE WEIGHT-GAIN DATA IN POLYMERIC COMPOSITES

By

Y. Jack Weitsman
The University of Tennessee at Knoxville

Abstract

This article presents a numerical approximation scheme, based upon the
method of moments, to evaluate moisture distributions within a com-
posite plate from data on total moisture weight-gain. Although it is as-
sumed that the diffusion process remains linear, the scheme applies to
moisture uptake data which depart from classical predictions. Two
examples are provided to demonstrate the validity of the scheme.



1. INTRODUCTION

The most commonly utilized technique to record moisture uptake in
polymeric composites, and materials in general, is to expose them to an
ambient environment and record weight gain with time. However, for
most engineering purposes it is important to know the spatial dis-
tributions of moisture rather than the integrated values which corre-
spond to weight gains. Several experimental techniques were employed
to record moisture distributions(l ) (2 ) but these are rather cumbersome,
to say the least.

When moisture weight-gain data under exposure to constant ambient
conditions follow the values predicted by classical diffusion theory, as
shown in Fig. 1, there is good reason to believe that the moisture
distributions can be "back tracked" in accordance with well known
classical results (3 ). It may be noted that the computations of these dis-
tributions are somewhat tedious and that the scheme proposed in the
present article appears to be more efficient. Nevertheless, for M(t)
which agrees with Fig. 1, the determination of spatial distributions
follow well established expressions.

In many circumstances weight gain data deviate rather significantly
from the classical predictions shown in Fig. 1. These departures were
studied extensively, mainly by polymer scientists, and attributed to a
variety of causes and mechanisms. One plausible interpretation at-
tributed those departures to the time dependent configurational rear-
rangements within the polymer chains, akin to viscoelastic mechanical
response (see ref. (4) for a listing of some of these works). According to
this interpretation, the chemical potentials of the polymer and the
surroundings do not equilibrate instantaneously even under constant
ambient conditions. The gradual approach to equilibrium can be ex-
pressed by a time-dependent boundary condition within the context of
an otherwise linear ("classical") diffusion boundary value problem.
Since the boundary condition is generally unknown, it is impossible to
"back track" moisture distributions from weight-gain data using text-
book solutions. The scheme developed in this article accomplishes this
task. However, it should be noted that the precision of the predicted
moisture distributions cannot exceed accuracy of the weight-gain data.

2. ANALYSIS

Consider a "classical," one dimensional diffusion process which is gov-
erned by the field equation
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-=D- t>o, -L<_x<L (1)
at ax"'2

where c is the concentration of the solvent (water) in, say, percent
weight-gain, D the diffusion coefficient in m2/sec., t denotes time and x
is distance across a plate of thickness 2L. Assuming an initially dry
plate, we have

c(x,o) = o -L < x < L. (2)

The boundary conditions are taken to be

c(±L,t) - f(t) (3)

where f(t) reflects the time-dependent response of the polymeric
component within the plate. This time-dependence is assumed to occur
even under constant ambient conditions, accounting for total weight
gains that depart from predictions based upon f(t) = constant.

While most experimental data give total weight gain, namely

IM(t) = j c(xt) dx the detailed distribution, c(x,t), is of higher rele-

vance for computations of residual hygro-thermal stresses in composite
laminates. The following approximate scheme enables us to unravel the
information contained in M(t) to obtain c(x,t). The approach extends the

'method of moments" developed for unbounded regions( 5).

The formulation presented in equations (1)-(3) gives c(x,t) = (-xt).

This evenness in x suggests the construction of the even mo-nents de-
fined by

M(2 pt) = x2p  c(x,t) dx 
(4) r

IL
For future use define the k-fold time integral of M(t)

I I'n
t /

Dist Special
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l(k)(t) = ftkt jW-I.... 2 j] M (r) dr dt . k....&1 (5)

and the k-fold time integral of boundary condition multiplied by 2L

J(k)(t) = 2L 1f Jk .. j j2 c(L,T) dct& d ... dTk- (6)

Note that M(0)(t) = I(O)(t) = M(t) and J(Q)(t) = 2LC(L,t). Furthermore, for

C(±L,,t) = CL = constant we have 2LCL = M-. whereby, for time-indepen-
dent boundary condition, we have

J(k)(t) = M-~ t k/k!

The method of moments derives from the fact that integration of
equation (1) yields

f cdx - ~~)dx = NM = M( 0))(t) = 1(0)(t)

L

DJa- dx =2Dac(O(7

fLa x x=L(7

Si mila rIy

Lf

- f L ax dx
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=2 DL 2 p Dc(x,t) I - 2p .2 DL 2p- c(L,t)

x =L

+ 2p (2p-1) D L 2 (p- 1 ) c(x,t) dx

L L2 p 1(0)(0) - 2pDL2 (p-1) J(O)(t) + 2p(2p-I)DM 2 (p..i)(t) (8)

Integration with respect to t and employment of mathematical induc-
tion yield

2pI (2p)! k 2(PFk J(k)(t)
M( 2 p) (t) =L ~(0) (t) + I~ 2p2 D L I(k) (t) - 2-k)1 9

Note that equation (9) involves the weight-gain data M(t) and their time
integrals. a procedure which is much less susceptible to errors than data
d i ffere n tia tio n.

At this stage it is expedient to introduce the non-dimensional coordinate

,= x/L, with a corresponding distribution ~ ~t.Consequently, we have

M (2)t C(',t) dr- = M(2p)(t) / L ~ (10)

Expand ( :,,Oin a series of even-order Legendre polynomials P2- (j

k

c r-t aj(t)H(t)P2 j A~ Il 1(1

where a~j(t) are the yet unknown coefficients and H(t) is the Heaviside
unit step function.

In view of the orthogonality of the Legendre polynomials we ha\-e((6

(C ( .tP2k('))d11 a2k(t)fI(t) 2 (12)
4k+l
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Substitution of equation (11) into equation (12) and employment
of equation (10), determine a2k(t) in terms of the moments M2j)(t)
j = 0,1, ... k as follows

2 a2k(t) (4k-I)!! ( (4k-3)!! ""- a2Mk2 k =t)(-k"" M (2k- 2Xt)
4k+1 (2k-1)!!(2k)!! (2k-3)!!(2k-2)!!2!!

+ (4k-5)!! M(2kat) - .... + ( 1)k (2k-l)!! (13)
(2k-5)!!(2k-4)!!4!! (2k)! !

In equation (13) we used the notation (2q-1)!! = 13"5-.... (2q-1) and
(2q)!! = 2"4.6 .... .(2q).

For instance (6)

2ao(t) = M j()(t). 2 att) = 3_ M ,)) Lt).522

a4 (t) = 1 3 5M( 1)(t) 30M(2 t) + 3M(() t
9 8

a6 (t) - 1 _13 IM(6 )t) - 315M( 4 )(t) + 105M( 2Xt) -5M( t)J , etc.
13 16

In view of equation (13) it is obvious that the representation (11) suf-
fers from accumulations of truncation errors. These errors are due to
the inherent scatter in the data for M(0)(t) as well as computational im-
precisions in the numerical integrations included in the higher order
moments M(2k)(t), k=l, ... p. The examples presented in the foregoing
section indicate that very good results for c(x,t) can be obtained by
taking k _ 4, in which case these truncation errors may not exceed a few
percentage points.

3. COMPUTATIONAL RESULTS

Computations were performed for two test cases where, for verification
purposes, both c(xt) and M(t) are known analytically. In both cases we
took L = 1.0 mm and D = 5.8 x 10 . 4 mm2/sec., while
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case (a) c(±L,t) = 1.0% (constant)
case (b) c(±L,t) = 0.8 + 0.2 (1.e-1t), 13 = 1/200.

Expressions for M(t) and c(x,t) are given in Ref. (7). The values of M(t)
were employed as simulated data to generate M( 2p)(t) according to
equation (9) and recreate c(x,t) according to equation (11) by solving for
a2j(t) in accordance with equation (13).

Results are shown in Figures 2 and 3. These figures show distributions
of c(x,t), employing up to six terms in the series (11), for various times.
The numerals accompanying the various curves indicate the number of
terms in the series, equation (11), employed in their evaluation. For
comparison purposes, the exact distributions c(x,t), which are known for
cases (a) and (b). are shown in solid lines. Note that, for the cases under
consideration, very good results were obtained by using no more than
three or four terms in the series (11). The divergence that is caused by
taking additional terms is due to trucation errors.

4. CONCLUDING REMARKS

The computational scheme developed in this work employs total
weight-gain data to determine moisture distributions across the thick-
ness of polymeric composite laminates. The scheme is most useful for

cases where weight-gain data depart from predictions of classical, linear
diffusion theory, when no "textbook" solutions are available to relate
total uptake to spatial distributions. It should be noted that the scheme
is based upon the premise that linear theory, as expressed in equations
(I) and (2), still applies, and that the sole cause for deviation from
classical weight-gain is the time-dependent material response which is
reflected in equation (3). In a forthcoming work we intend to propose
some criteria to examine if moisture uptake data concur with the above
premise and devise a method to determine f(t). In addition, it should
be noted that the diffusion coefficient D is also generally unknown and
must be determined experimentally. It is our intention to address this
aspect as well.
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